Attire to be Worn when Social Networking with Plants

IMG_1398

An elegant black dress in which the intricate white patterning is alive and will link its wearer into the soil mycorrhizosphere.  The latter is  a vast network made by symbiotic root  fungi which promotes plant growth  through which plants have recently been shown to communicate forming  a type of information network amongst plants. This is a first experiment. An equal quantity of seeds was added to the two tubes but only one contains mycorrhizal fungi. The results are striking. All done with items available at any garden centre so a little DIY Bio experiment too!

C-MOULD: New acquisitions

Images: Pellicles formed by cellulose nanofibre production by two strains

of Gluconoactobacter xylinus

 

IMG_1395 IMG_1396

C-MOULD the world’s largest collection of microorganisms for use in art is pleased to announce two new acquisitions. Two strains of Gluconoacetobacter xylinus, which produce  cellulose nanofibres when grown with sugar. They might not look impressive, but these are the basis of Suzanne Lee’s wonderful BioCouture. I’m planning to grow my own building!

Nine Waters (Media: found water and universal indicator)

5 microlitre aliquotes of the pH indicator and water samples were mixed on a hydrophobic surface in order to maintain the integrity of the droplets. Love this one.

5 microlitre aliquotes of the pH indicator and water samples were mixed on a hydrophobic surface in order to maintain the integrity of the droplets. Love this one.

The pH indicator was impregnated into paper and 5 microlitres of th water samples pipetted onto it. Don't like this process

The pH indicator was impregnated into paper and 5 microlitres of the water samples pipetted onto it. Don’t like this process

In these tests, I continue to explore the nature of water. The chemical properties of pure water are universal, and unchanging, and what gives natural water courses their identity, and influences what else can live in them, exists within water and between the spaces of its polar molecules. I’m seeking to reveal these defining elemental signatures. One of the most important of these is  pH, that is whether the water is acidic or alkaline, and this can be measured by adding a pH indicator to the sample. The colour of the indicator changes according to the pH value of the water. I travelled  86 miles today and collected nine water samples on my journey and experimented on them.

Not unlike Damian Hirst’s spot paintings but the colours that  are generated are predetermined by, and are a direct reflection of the natural world. Oh and there’s acid rain there in the mix too!

Hoping to develop this into a much larger project with the help of a pointillist

From left to right the waters are:

1. Tap Water, Four Marks, Hampshire (pH 9, alkaline)

2. Rainwater, Four Marks, Hampshire (pH 4.5, acidic)

3. Seawater, Broadmarsh, Hampshire (pH 9, alkaline)

4. Marsh water, Tannic Pond, Thursley Common, Surrey (pH 5.5, acidic)

5. Water from the Moat,  Thursley Common, Surrey (pH 4.5, acidic)

6. Marsh water, Raft Spider pool, Thursley Common, Surrey (pH 5.5, acidic)

7. River Itchen water, Ovingdon, Hampshire (pH 9.0, alkaline)

8. River Wey water, Tideford, Surrey (pH 7.5, slightly alkaline)

9. Marsh water,  Bladderwort  pool, Thursley Common, Surrey (pH 4.0, acidic)

Bee-Jewelled. Found dead bees and Copper Sulphate

IMG_1361 IMG_1362 IMG_1363 IMG_1365 IMG_1366

This work was inspired by the depressing news, released this week,  that explains the massive die off of bees. Bees it would seem, like some kind of airborne swarm filter feeder,  concentrate environmental  pollutants,  like pesticides and fungicides,  and this makes them hypersensitive to a natural parasite called  Nosema cerenae

With a nod to  Ackroyd and Harvey, Roger Hiorns and to Ballard’s “Crystal World”, this work reflects the ability of bees to concentrate environmental chemicals and highlights fears for their extinction.

This Pen Is Mightier Than The Sword

Where two drops of the precursors merge the red coloured antibiotic Prontosil is formed

Where two drops of the precursors merge the red coloured antibiotic Prontosil is formed

The fountain pen and cartidge loaded with "invisible ink"

The fountain pen and cartidge loaded with “invisible ink”

The nearly invisible message

The nearly invisible message

IMG_1356

The developing solution with the second Prontosil precursor

The developed message. The red letters a made from the antibiotic Prontosil

The developed message. The red letters are  made from the antibiotic Prontosil

Today we take antibiotics very much for granted and face a very serious problem with the emergence of widespread bacterial antibiotic resistance. In the years before 1935, bacterial infections were a deadly and an ever-present risk, with people routinely dying after very minor scratches or cuts once they had become infected. This all changed following Gerhard Domagk’s research on Prontosil, which became the first commercially available antibiotic. In its time, Prontosil was seen very much as a miracle drug since after taking it patients who were near-death were revived and became healthy again within hours. However, Sulphanilamide, a derivative of Prontosil was cheaper to produce, and was also easier to link into other molecules, and this soon gave rise to hundreds of second-generation sulphonamide drugs, and as a result, Prontosil failed to make any profits in the marketplace and was quickly eclipsed by the newer “sulpha drugs”.

For this work I have prepared two separate and colourless precursors that when mixed together form the bright orange coloured antibiotic Prontosil. As a child I was fascinated by invisible inks, which are invisible on application, but which can be made visible by some means or other later, and this formed the basis of this work. I loaded one of the precursors into a fountain pen to make an invisible ink, wrote with it, and then exposed the invisible text to the second precursor in order to develop the message. The red letters are made from Prontosil, as the two precursors combine, and would have once saved lives. It’s odd to think that I’ve always hated fountain pens because I’m left handed and find it difficult not to smudge the ink.

DIY Bio Microbiological Stain

Yeast cells at 400x magnification

Yeast cells at 400x magnification

A slide with a smear of bacteria stained with the stain

A slide with a smear of bacteria stained with the stain

Cocci (spherical) shaped bacteria  at 1000x magnification. The photograph really doesn't do this one justice!

Cocci (spherical) shaped bacteria at 1000x magnification. The photograph really doesn’t do this one justice!

 

I’ve been trying to develop a DIY Biology stain for visualising microbes and bacteria for around six months now. I’ve encountered many deadends but I’ve now developed one that works beautifully and for which the ingredients are safe and readily available to non-scientists. The images are poor because the microscope I used didn’t have a dedicated camera and I had to point my camera at the eye piece. But it works!

A Fungal Timepiece

IMG_1327 IMG_1328 IMG_1329

I’ve been looking for a while  for a suitable microorganism that might make the time-telling mechanism of a living timepiece. I have a kind of old fashioned but biological pocket watch in mind. I’ve just tested this fungus and it’s perfect!  The large fungal colony here is over two months old and it clearly shows evidence of some form of biological clock at work. Not unlike the rings that  we might find when a tree is cut down but the fungal rings develop over a much shorter time period.  All I need to do now is calibrate the cycle.