Happy Christmas From Exploring The Invisible


Something festive. A deconstructed Bacterial Christmas Tree. The green foliage, is encapsulated Pseudomonas aeruginosa, and the red baubles the blood bacillus,  Serratia marscens. Both are potentially pathogenic, so in the lab it must remain.

The bacteria have added their own character to the work, as their activity has dissolved the gelling agent, distorting the intended neat Christmas tree design. Thus the living bacteria, that  were initially used for their colourful pigments, have also contributed to the work. For me this is a vital aspect of the art piece.

Prokaryotic Perfumes


For many years now, scientists at C-MOULD have explored the use of naturally pigmented bacteria (see the image above) to generate living inks and textile dyes. In 2015 we will explore another sense through which we can engage with, and perhaps even be manipulated by, the bacterial world. Rather than vision, this sense is smell.

Smell can evoke the richest of memories,  and through this sense our most intimate and affecting moments can be reached more readily than through any other channel. The project is inspired by my own experiences in medical microbiology, and how we taught to presumtively identify bacterial pathogens on the basis of the aroma that they generate. To this day I can still remember the moment, when in an undergraduate microbiology lab class, the late Joyce Fraser told me that Haemophilus influenza when grown on blood agar smells of semen! She was of course quite correct. Here are some other bacterial aroma notes:

Eikenella corrodens: bleach

Staphyloccocus aureus: skin-like smell with a secondary smell of bread.

Pseudomonas aeruginosa: initial smell of grapes with a secondary smell of tortillas

Group F Beta Hemolytic Streptococcus: strong buttery smell

Stenotrophomonas: ammonia

Staphylococcus epidermidis: body odour

Streptococcus intermedius: butterscotch

Proteus vulgaris: burnt chocolate

Flavobacterium odoratum and Alcaligenes faecalis (formerly Alcaligenes odorans) freshly cut apple

Streptomyces coelicolor: freshly dug soil/autumnal woodlands

Gluconoacetobacter species: vinegar

Clostridium perfringens: horse shit

Leptothrix discophora: homegrown

_MG_6487 _MG_6488

The iron oxidising bacterium Leptothrix discophora forms beautiful, fragile and iridescent oil-like films on the surfaces of natural waters rich in iron. Often mistaken for pollution and oil spills, these films are an entirely natural phenomenon. I decided to try my hand at growing this bacteria at home, and simply threw a handful of iron nails into a bucket of collected rain water. Just over a month later, and I have a thriving and iridescent surface community of Leptothrix discophora. I simply provided an appropriate niche, which the bacteria found an exploited. How did they find it? Were they wind blown or were they present in the rain itself?




A brief microgeographical journey, connecting micro and macrocosm.

A damp concrete wall supports a green photosynthetic ecology. Within the algal continuum there are white circular zones of inhibition where the underlying concrete has been revealed and I’m guessing that this is caused by a fungus producing a metabolite that is killing the algae. Perhaps this could be explored as a natural herbicide.

The video shows the same ecology at 1000x magnification, revealing a thriving community of algae and bacteria.

Blue Spore: germination and development into context

18954_213649808173_3777849_n 18954_213649818173_4799197_n 18954_213649828173_4824758_n 18954_213649843173_3354754_n 1917848_210808878173_1101521_n 1917848_210808883173_942815_n 1917848_210808843173_2667339_n 1917848_210808868173_11976_n 1917848_208963963173_6216154_n 1917848_208963998173_2161530_n

Some years ago now we visited Roger Hiorn’s work Seizure in London. The Turner Prize nominated artist had turned the inside of an old council flat into a wondrous crystal grotto using copper sulphate. A deep blue crystal had broken off the work and on the floor. Isolated from the main body of crystallization, it was noticed and pocketed by an attentive and small child (Joe my son). Apparently lifeless, I started to think that the shard retained a stilled and latent energy, and that like a biological spore, it harbored a set virus-like instructions, derived from artist’s initial vision, that would lead to the birth of a new and unique art form.  At home, I nurtured the deep blue spore and carefully encouraged it to germinate  and so that it grew into its own unique,  yet related ecology. Primed by its inherent chemistry and potential, it is Hiorn’s  “Seizure”, and an unexpected  extension of it, but also it is not, having emerged into,  and representing, its own unique context.

The Blue Chemical Ecosystem appears to change constantly in response to its environment, first emerging as tall and thin spikes, but later into other wonderful and unexpected  forms. For example, it would appear that at the bottom the competition for space and “nutrition” is intense. In response, a new species has emerged, the surface dweller, which has evolved its own air bladders, allowing it to  live on the air/liquid interface and  thus toexploit this hitherto unoccupied domain.

Pale Blue Dots: exploring the limits of self

The Pale Blue Dot,  is a photograph (inspired by Carl Sagan) of planet Earth taken in 1990 by the Voyager 1 space probe from a  distance of about 6 billion kilometers from Earth. In the photograph, Earth’s apparent size is less than a pixel and the planet appears as a tiny dot against the vastness of space.

The “Pale Blue Dots” in this work are my own cells, as imaged at 1000x magnification. They are the minutest divisible living part of me, and too appear as tiny dots against the relative vastness of my body. In the background are even smaller bacterial cells, and the modern understanding of these lifeforms suggests that these too are also part of me. At this extreme scale, I have difficulties imagining where I begin and end.